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Building on results of an earlier paper we study the discrete spectrum of the 
Rayleigh piston. We first prove the absence of discrete spectrum on the 
subspace of odd functions everywhere in the Lorentz regime. Then we give 
upper bounds on the number of discrete eigenvectors as a function of the mass 
ratio using a variety of methods which to some degree complement each other. 
We also investigate the precise degree of divergence of these bounds as the mass 
ratio goes to infinity respectively zero. 

KEY WORDS: 

1. INTRODUCTION 

In Ref. 1 we began a study of the spectral properties of the operator family 
�9 -- X 2 t 2 

{Z - Gi.},E~t/2.o~ ) . Z ( x ) : =  e + 2x~(x). ~ ( x ) : =  f ; e -  dr. a multiplica- 
tion operator and G~ an integral operator with kernel 

g~(x, y)  =/aglx - ylexp[ - 1 (x 2 + 9 )  - a ( x  - y)2] 

= l,2lx _ y lexp[_2s2(x2 + y2) + a(x  + y ) 2 ]  (1.1) 

with a = / , ( / z  - 1), s = / ,  - 1 (these abbreviations will be used throughout); 
both operators acting on L2(N). We have/z = (2"/) l(1 + ./) with . / the  mass 
ratio between test- and heat-bath particle in the Rayleigh piston model. For 
the sake of brevity we refer the reader to the introduction of Ref. 1 for 
motivation, background literature, and general remarks. 
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From Ref. 1 we learn that the discrete spectrum of Z -  G~ is con- 
tained in [0, 1] for all/~(e 'x2 defining the unique ground state) and empty 
apart from this ground state near ~ = ~, = 1. 

In the present paper we are concerned with the problem of giving 
upper bounds for the number of discrete eigenvalues (always counting 
multiplicities) as a function of/~, in particular with the degree of divergence 
of that bound for/ ,  ~ ~ respectively/, ~ ac. We shall see that the situations 
fo r / ,  > 1 (the Rayleigh regime) and /x < 1 (the Lorentz regime) are radi- 
cally different in many respects so that a variety of methods will have to be 
developed to deal with the problem. The strategic problem here is that there 
are innumerably many ways in which our operators can be transformed 
and adjusted so as to make applicable one of the general methods which 
have been developed to solve the same problem for the Schr6dinger 
equation (see, e.g., B. Simon's article in Ref. 2 or the relevant chapters in 
Ref. 4). Unfortunately the relative merits of each ansatz can only be 
ascertained after having carried it out. We hope that our choice will also 
give the reader some insight into the structure of G, as well as into the 
general methods applied to the special case. 

At present the question of lower bounds remains open; it is considera- 
bly harder since general methods which only need applying do not seem to 
exist. This can thus only be solved by a much deeper study of the operators 
involved. 

2. ABSENCE OF ODD EIGENFUNCTIONS 
IN THE LORENTZ REGIME 

Before stating the result let us for a moment consider the Rayleigh 
regime. For ~t--~ m, G~ converges strongly to the multiplication operator 

- x  2. 2 " 2 e , therefore on Lod a as well as on L . . . .  the discrete eigenvalues become 
arbitrarily dense in (1.1) if/x is large enough (see Ref. 1 for details). The 
heuristics for the statement below is as follows: we first define 

G; ~ := / *2e ('/2+'~(x2+9~cosh(2e~xy)t x - Yl (2.1) 

and similarly G~ with the sinh function. Then G~ is negative definite on 
2 G s Loa a, whereas is negative definite on Le2ven for/x > 1 but positive definite 

for /~ < 1 (expand the cosh, respectively sinh, term and integrate matrix 
elements term by term(~)). For # < 1 we then write 

Z -  G~ = Z -  2G~ +/x2[x - y [ e x p [ - 2 s 2 ( x  2 +y2)  _ ]al( x _y )2 ]  (2.2) 

and restricting both sides to L2da we have 

Z-- G~lg~dd~" (Z + ix2lx- y[exp[-2s2(x2 + y 2 ) - I o ~ l ( x -  y)2]}lc~" 
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In the limit/,--> 1/2 the right-hand side becomes Z + ~lx - y ]  e -  (J/4)(x _y)2. 
This last operator is easily seen to be strictly positive. So the spectrum of 

2 (1) Z - G~ on L2dd does not extend down to 0 as is the case on Leve,. Since 
the estimate above is extremely crude we might hope that S p ( Z -  G~) on 

2 Lod d has lower bound 1 for all / ,  E (1/2, 1). In fact we get the following: 

Theorem 1. For all /, E ( t / 2 ,  I) S p [ ( Z -  GI~)IL~d ] is contained in 
[1, oe). 

Proof. Let / ,  ~ (1/2, 1); (Z - G,)] r~d~ can be rewritten as an opera- 
tor on L2(N+ ) 

z- ]x - yle <  - ( x + y)e~(~-*)2]e- 2~2(x2+Y2) (2.3) 

where we have renormalized the state vectors, thus absorbing the factor 2. 
The operator on L2(R+ ) corresponding to the new kernel becomes un- 
bounded as /,--> 1/2. However, the unbounded part is harmless, as seen 
above. So our strategy is to find a negative definite kernel representing an 
operator - B * B  that approximates the negative part of G~,IL~d ~ better that 
(2.2) and then estimate the remainder as a form by 0(/,)(Z - 1) with 0(/,) a 
continuous function on [• 1] and bounded by 1 on the interval. This will 2 

mean that f o r / o d d  we have (f, [Z - G~lf) > ]tfH~ for all t~ ~ (�89 1] which 
is what we want. 

2. It takes some trial and error to find a suitable kernel for B but 
eventually one comes up with the ansatz [(x, y) E R 2 +]: 

K +- (x,y) := e-~'-(e -~(~-y)~ +_ e-P(~+Y)~)e-& .yl/2 (2.4) 

For x, y > 0 we compute: 

fo K- (x, y)K - (y, dy 
= e x p [ - ( u  + B)(x 2 + z 2) + o(x + z) 2] 

•  e-V'~[t+ -~(x+z)]d t  -(o/p)(x+~) 

(o/13)(x + z) L -'~ 

- exp[ -(u + fl)(x 2 + Z 2) -l" O(X -- Z) 2 ] 

oo e-- 

+C ~ e - r ' ~ [ t - ~ ( x - z ) ] d t }  
a(o/l~)(x- ~) L 
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where we have set o:=/~212(~+/~)]-1,  T : = 2 ( v  + fi). The terms with 
integrand te -  '~ can be evaluated immediately and cancel out in the case of 
K -  since yo2fi - 2 =  a. In the case of K + they would contribute (2 /y)  
e x p [ - ( u  + fi)(x 2 + y2)], about which more will be said below. In the case 
of K - ,  however, we are left with 

z (~ e x p [ - ( u  + f i ) (x  2 +z2) ] [ -~e~  + ) s  

= 28.  e x p [ - ( u  + / 3 -  2o)(x 2 + z2)] 

x { (x + z)e-O(x-~)=s 

_ lx _ zle-O(x+z)~s (2.5) 

where again we have abbreviated ~ : =  lol. ]fll - t -  ITt -1/2. To make this 
resemble (2.3) we adjust the exponentials setting o = Icq, (u + / 9 -  2o) 
= 2s 2, which yields u + fi = 1/2. The integrals left in (2.5) then give 
@[Ic~ll/2(x + z)], respectively, @(l lV21x- zl), irrespective of the choice of 
(u, v,/9) within the allowed range. Thus this ansatz has its limitations and 
does not allow to show that G~ is itself negative definite on the odd 
subspace. We now fix u = 0, /3-- 1/2, v - - (81o0  - 1 -  1/2. Defining now 
the operator B* as having the kernel / / .  (lal~r)-~/4K - we get 

B*B = 2~2 e-2&x~+'2){ (x + y)e*~(x-Y)~$[ lall/2(x + y)] 
,g 

- I x  - y[e~(-~+Y)~ei,([~l~/2[x - y [ ) }  (2.6) 

where we introduced the factor 2/~/~ - to compensate for the asymptotic 
value of 0(x). 

In order to further improve the approximation we define another 
negative definite operator - A *A --//2 exp[ - (1/2)(x2 + yZ)][x _ Y I, which 
as a kernel on Lz(R+ ) becomes//2 e x p [ - ( 1 / 2 ) ( x  2 + y2)][Ix - Y t  - (x + y)]. 
On the L2(~+) we then have Z -  G, > Z -  G ~ -  B ' B - A ' A ;  and the 
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kernel of G~ + B*B + A*A becomes 

l~2e-2"~(x~+Y~)(,x- y,e~'(x+Y)~[1- -~@(,o~,l/2,x- y , ) -  e'~(x-y)2] 

- (x + y)e ~(x-y)2' 1 - 

= Iz2e-('/2)(x2+9){(x +y)t(I,~l'/2(x +y)) - I x  -ylt(I,~l'/21 x -Yl)} 

(2.7) 

with 

2 eX2L~e-?dt L(x) "= 1 -  ~-~ 

What have we achieved so far? The function L([a[1/2x) is bounded by 
1 uniformly for /z ~ [ i ,  1]; so (2.7) represents a "small" Hilbert-Schmidt 2 
term down to tt = �89 unlike the crude decomposition (2.2). In principle we 
could estimate (2.7) against Z - 1 numerically but we shall go on to give an 
analytic estimate for 0(tt ) first because it is not too much trouble and 
second because the methods used to estimate the various terms will proba- 
bly prove useful for handling other problems connected with the operators 
in question and which may not be accessible numerically. 

We first estimate L(x) from above. We are looking for a function h(x) 
with the following properties: 

(a) h(x) >1 L(x), Vx >>- 0; (b) h(x) and x[h(x) - L(x)] grow monotoni- 
cally for x > 0 [note that L(x) itself grows monotonically so that (2.7) is 
strictly positive in N+ ]. With such an h(x) we get 

I(x + y)t(14V2(x + y)) - I x  - ylt(l~l'/21x -Yi)I 

I(x + y)h(l~l~/2(x +y) )  - I x  -ylh( l~l  Ix -Yl) 

+ (x + y)[ h(l~l~/2(x + y)) - L(14'/2(x + y)) ] 

+ Ix -yl[h(14'/21x - Y l ) -  L(14'/21 x - Yl)]I 

< (x +y)h(Io~ll/2(x -q-y)) --Ix -ylh(14'/21 x -Yl) (2.8) 

Noting that near x = 0 L(x) ~ 2x/~/-~ we make a simple ansatz trying to 
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find a > 0 such that L(x)  < 2x[~-(1 + ax)] i for x > 0. This will work if 

- -  ~X OO --t2 2x e-X2 - e - ~  + 2 e aft >~ 0 (2.9) 
~-(1 + ax) 

The derivative of (2.9) is 

( 2 / ~ - ) [ - 2 x 2 ( 1  + a x ) - '  + (1 + ax)-2 + x - l i e  ~2, 

which on ~+ has the same sign as 

x ( ~ - -  2a) + x2(2a~[~-a 2 -  2) + x3(a2~[~ - 2a) (2.10) 

Near zero this has to be > 0  so we must have either ~ - - 2 a > 0  or 
~-  - 2a = 0 and 2a~-  - a  2 - 2 > 0 (for a = , ~ - / 2  this becomes 3~r/4 - 2 
> 0). With a = , / ~ / 2  the coefficient of x 3 is < 0; (2.10) has exactly one 
zero in (0, m), i.e., a = ~ - / 2  is the best possible choice for this type of 
estimate. 

To check condition (b) we need only prove that with our choice 
h(x) - L(x)  grows monotonically. For this we need 

1 2a+a2x  >/0, V x > 0  (2.11) x~e-t~dt - -~e x2 (1 + ax) 2 

This will hold if the derivative of (2.11) is > 0 near x = 0 and has exactly 
one zero in (0, oc). The possible zeros of that derivative are those of 

(1 + a x ) - 3 [ - a ( 1  - a2/2)x + (3/2)a  - 11 (2.12) 

For a = ~ - / 2  this works. 
The function in (2.7) is thus everywhere smaller than 

xyT~(x, y) := f e  -('/2)(~2+y2) 810L{1/2 xy 

-1  - !  
X 1 + (~rl~ (x + y) 1 + - -  Ix - Yl 

2 2 

X[ l+(vrla')./---~22 ( x ( X + y ) I x - y '  ] + y ) + , x _ y [  (2.13) 

and so if both of the corresponding operators are sandwiched between 
multiplication operators ( Z -  1) -1/2 the norm of the first will be smaller 
than the norm of the second, which in any case we have to estimate by its 
Hilbert-Schmidt (HS) norm. 
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First, using 1emma 1 of Ref. 1 we note that the HS norm in question 
will be smaller than the one of exp[(1/12)(x 2 + yZ)] T~.(x, y). Noting further 
that the new integrand is symmetric with respect to the transformations 
(x, y ) - - > ( - x ,  y)  and (x, y) -~ ( -  x, - y )  we convert the integral over ~2+ 
into one over ~2, introduce new variables u := (x + y ) / 2 ;  v := (x - y) /2 ,  
and then go back to ~2+ to get [setting q := (~]al) 1/2] 

e(1/t2)(x2+v2)T l ~  ,,~ 2 " .~k~,  ,v) HS 

�9 + q u )  - 2  

U*2 X (1 + r  + r  ) 2dlgdD (2.14) 

Next we write out uv = �88 + v) 2 - �88 - v) 2, multiply out the last bracket 
in (2.14), neglect the negative contributions, and we see that the integral in 
(2.14) is smaller than 

(2.15) 
4 

having set a := 5(3trial)- 1. Thus we get 

( | / | ' )(X2+ ]J2' 2 8 ~  s  Z ) e - ~  (2.16) 
lie - T~,(x,y)HHS~< /z ~ 1 + ~  ( l + z )  2 

The last integral which apparently cannot be computed exactly must be 
estimated. First, by estimating 

(~176 dz > _ ~ 0-3/2 1 
I (a ) '  = 20 a0 (1 -[- Z) 3 

we get I(o) < �89 1/2. This yields a bound 4(1.2)I/2/,2[a[ ~/2 which is not 
quite sufficient (taking values > 1 near/ ,  = 5/6). However, one easily finds 

1 [ ( r r ) ' / 2  1 ] + 2 a + t s  dx (2.17) 
l ( a )  = g o a 4----7- (1 + x) 2 

From this we get I(o)  ~< (20 - 1)-|[(~ro) 1/2 - 1]. This gives an additional 
factor to the first bound which has the form (20 - 1)- I[2o - 2(a/~r)l/2]. It 
is then straightforward to check that in the critical range of the first bound 
this factor (which grows monotonically with /, in that range) is small 
enough to make the new bound smaller that 1 for all /, E [{, 1). The 
theorem is proved. 
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Remark. From the theorem we derive the existence of three thresh- 
L . . . .  there are /~+, /x  old values for the discrete spectrum of Z - G,. On a 

with/x < 1 </x+ for the onset of the second discrete eigenvalues beside 
2 the ground state as one goes away from /~ = 1. On Lod d there is /x0, the 

smallest number for which there is a discrete eigenvalue o n  Lo2dd . The 
methods and results discussed below allow to estimate these values, but we 
shall not do so since we feel that these estimates would still be rather crude 
and we hope to find better methods for doing so in the future. 

3. A SCHR(~DINGER-TYPE UPPER BOUND 
IN THE RAYLEIGH REGIME 

In this section we give an upper bound for the total number of discrete 
eigenvalues valid for all/z > 1. Its method consists in reducing the problem 
to one of estimating the number of discrete eigenvalues of a one- 
dimensional Schr6dinger operator for which a bound in terms of the 
potential is available. (2) It is somewhat similar to the method used in Ref. 3 
to prove finiteness of the number of such eigenvalues but more direct and 
easier controlled numerically. 

As a first step we note that for /x > 1 G, is convolution by %(x )  
:= Ixl e-'~x2 sandwiched between multiplication operators. Splitting the 
Fourier transform ~ ( k )  into positive and negative parts we get a decompo- 
sition of G, as a difference of two positive operators (this has nothing to do 
with the canonical one resulting from spectral theory). Let 

H ?  := ~t2e-X2/2~ + (k)e-y2/2 

it then follows that as forms on L2(~) 

z -  G. z -  II? 

(3.1) 

(3.2) 
and by the min-max principle (Ref. 4, Chapter XIII) we know that 
Z -  H ~ - - w h i c h  has the same continuum threshold as Z -  G~--has at 
least as many eigenvalues in ( -  ce, 1] as has Z - G~ in [0, 1]. 

More precisely this remains true if the interval ( -  ~ ,  1] is replaced by 
( -  oe, 1) for Z - H~ + (this bit of extra precision will be needed below). For 
let f be a discrete eigenvector of Z - G~. The form of the kernel of G~ then 
implies that there is a constant My such that for x E Rlf(x)l < Mje -x2/2. 
Thus the Fourier transform fhas an entire continuation into C and cannot 
be zero on any real nonzero interval. Thus (f, H~-f) > 0 and, if E denotes 
for the moment the spectral projection for [0, 1] of Z -  G,, we get on 
EL 2(N ) 

E ( z  - H.  + )E < E ( Z  - G , )E  (3.3) 
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so E(Z - H ~ ) E  has at least as many eigenvectors as Z -  G~ on EL2(R). 
But then by Ref. 4, Theorem XIII.3, Z - H e  + has at least as many 
eigenvalues in ( - m, 0) as Z - G~, in [0, 1]. 

Now in Ref. 1 we proved that Z(x)  - 1 ~ x2e-X2/~ for all x ~ N; so we 
can write (shifting the continuum threshold) 

Z - 1 - H ~  >1 x2e -x~ - e-X~' /~ + ( x  - y )e -Y~ /2= :  T~ (3.4) 

Therefore T f - - t h e  strictly negative part of T F - h a s  rank not smaller than 
rank (Z - 1 - H + ) - ;  however, it is clear that 

d i m r a n ( T f  ) < dimran[  x 2 - ~+ ( k ) ] -  (3.5) 

where "ran" denotes the range of the operator. 
The problem is thus reduced to estimating the number of discrete 

eigenvalues of the one-dimensional Schr6dinger operator in (3.5). Now it 
was also shown in Ref. 1 that qS~(k) goes like O(k -2) for [k[ large; so it is 
not immediately obvious that application of Theorem 6.4 of Ref. 2 wilt give 
a finite upper bound. The necessary facts about r which all the 
q~+(k) are scale transforms--are gathered in the following: 

Lemma 2.1. (a) ~ ( k )  is positive in a neighborhood of k = 0 and its 
support is a symmetric interval contained in ( - 2 ,  2). (b) On its range we 
have 

cos(k) -< e ~ ( k )  < 1 - k2/2 + k4/12 (3.6) 

Proof. (a) We write 

( ~l(k) = 2j0 xe cos(kx) dx = 2 

(3.7) 
- -  X 2 Since e decreases monotonically on (0, oo) we have 9(k)> O, Vk > 0 

and 8 obeys the following DE: 

O"(k) + kO'(k) + O(k) = 0 (3.8) 

If now 0 had a local minimum at any point k t > 0 we would have 
O"(k 0 < 0 by (3.8), a contradiction. Thus in {k > O}O(k) has just one 
maximum and so O'(k) has exactly one zero ~1 in (0, oo). By means of the 
power series expansion ~ l ( k ) =  ~,~=0(-1) '~[n!/(2n)!] k2" one then readily 
checks that 8 ' ( 2 )<  0 and also the double inequality (b). The remaining 
assertions are trivial. [] 

Let us introduce the notation n~(X) for the number of eigenvalues of 
Z -  G~ in [0, )t] with the additional subscript e, respectively o, if only the 
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even, respectively, odd, subspace are considered. From the formula quoted 
above we then have the bound 

n (1) 1 + 1+ (3.9) 

Using part (b) of the lemma above we see that the t~ dependence of our 
bound is not better than (~r/2 - 1)~ 2, that is, the bound is weak near/~ -- 1, 
a feature it shares with all the other global bounds below (for obvious 
reasons). Though we might try to improve the overall constant in the bound 
by considering the even and odd subspaces separately this would not 
change the t~ dependence, i.e., if there were a marked difference in the 
density of eigenvalues on the two subspaces the bound would not show it 
up. Furthermore it is not applicable to the case /x < 1 since if we try the 
obvious splitting 

Z -  G~ = Z -  2 G ; -  d~ (3.10) 
S with G~. as in (2.2) we now have G~ positive definite on L2ven and the 

problem becomes radically different. So we must try something else. 

4. BOUNDS BASED ON THE BIRMAN-SCHWINGER PRINCIPLE 

We use a slightly modified form of the Birman-Schwinger (BS) princi- 
ple used to get bounds for the Schr6dinger equation (Ref. 4, Section 
XIII.3C). To do this we first replace G/~ by some positive trace class 
operator L~ such that Z -  G, t> Z -  L, on the subspace in question (this 
method does not work on L 2 as a whole). Then, considering the family of 
operators Z - tL~, t ~ (0, 1) for /x fixed we find that n~,e(X ), respectively, 
n~,o(X), is exactly the number of t ~(0,  1) for which Z -  tL~ has an 
eigenvalue X; this in turn is the number of eigenvalues in (q, ~ )  of the 
operator (Z - X)-1/2L,(Z - X)-1/2 which in turn is bounded above by the 
trace of the latter operator (which by construction is positive). 

We immediately get a first such result using as L, our H J  of the 
previous section. For )t ~ (0.1) we have, using the standard formula for the 
trace of continuous kernels, 

n.(X) <  2W+ e-X [ Z(x)- X]-'dx 

=p~2a-1/2ep~-(O)S; e - X 2 [ Z ( x ) - X ] - l d x  (4.1) 

The interesting aspect of this simple bound is that it goes like ~ asymptoti- 
ca l ly - the  same degree of divergence as conjectured on the basis of a 
nonrigorous treatment in Ref. 3. Formula (3.10) above shows us how to get 
an analogous result for/~ < 1 by decomposing G, in the same way as G, 
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before (G~ = g / +  - /~ , ,  with/t1~ + = ~2e-2"2x2~;(k)e-2S~'2) and taking now 

2 We then argue as before but since we are now dealing with Leven only 
we must convert the operator (Z-)to)-I/ZL~(Z- )t0) -1/2 into a kernel 
over Lz(R+ ) before applying the trace formula. We get, setting from now 
on v = �89 +a, 

--  4a2x 2 + nu,e(a0) < >2fo~[e-2~X24xsinh(21oLIx2 ) + e "I" (2x)]  dx 
z( 5- x0 

(4.2) 

The first important thing to note about this formula is that if Z(x) were 
growing somewhat faster (like Ix[ 2+~) the bound would converge to a finite 
value if /~ ~ � 8 9  that is, in the limit we would only have finitely many 
discrete eigenvalues in any interval (0, h), h ~ (0, 1). The question whether 
this really is the case will be examined below from a different angle and 
turn out to be a tricky one. In the Rayleigh regime this is no problem (Ref. 
1, Section 3) and this is reflected in the bound (4.1), which diverges 
regardless of the growth of Z(x). To find the degree of divergence of the 
bound (4.2) we first note that the second summand in the integrand gives a 
finite contribution for all ~t ~ [!,2 1] since 'I '+(x) is the function ep~+(lc~lx) as 
defined above apart from a constant that remains bounded. The latter 
function, however, is in LI(N+ ). The first summand we estimate as follows: 

4/~2( sup X)fo~176 
\x~N+ Z - ) t 0  

2 

= MXo/~2[(1 + 4 a ) - ' -  1] = M x 0 ~ s - '  (4.3) 

with a suitable constant Mxo. We summarize the results in the following: 

Theorem 4.1. The total number of discrete eigenvalues of Z - G~ in 
[0, X] is bounded by a multiple of the mass ratio 7 for 7 ~ m and by a 
multiple of y - ~ for y --+ 0. 

The question now is: Is the difference in degree of divergence of n,(1) 
as given by the Schr6dinger-bound above and the present n~()t0) real or an 
artifact of our method? Unfortunately in the bounds above we cannot let 
simply )t o ~ 1. This means that we have to construct our L~ by a different 
method we want to estimate n~,(1) by the BS method. Here is where we 
must consider the three subspaces 2 2 (Le . . . .  tx ~ 1; Lodd, g > 1) separately. 
The easiest case to handle is the last one for which we shall carry out the 
necessary computations in some detail; for the other case we shall merely 
indicate the necessary adjustments and give only the results. 
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Let, therefore,/~ > 1 and f an odd, real function. A first possibility is to 
s c write G. = G~ + G., to forget about the negative definite G.,  and to 

extract a positive operator from the remainder as follows. The matrix 
element (f, G.'f) may be evaluated term by term after expanding the sinh in 
the kernel.(1)~The nth-order term in that expression reads 

? f  f(x)f(y)(xy) 2"+ ~]x - yle -'(x2+y~) dx dy 
- - 0 0  

= 8s f(x)x2"+2e-"s 

=8s176176163176176 2 

- 8s dx f(x)x2"+2e-"'s ~~ dy f(y)y2"+'e-r (4.4) 

Introducing the function 

X~(x) := s162 

the second term on the right-hand side of (4.4) simply becomes 

2 -4 s  x~ (x)dx< 0. 

The first term we estimate as ab <<. �89 (a 2 + b2), i.e., by 

2{ [ f~oj(x)lxlx2.+le_.X~d x ]2+ [ ~f(x)x2.+,e_.X, dx]2} 

c o  

= 2 f f f(x)f(y)(xy)2"+'(l + lxyl)e "(~'+/~ dx+ (4.5) 

Doing this to all orders and leaving out all the negative contributions we 
get 

oo 

(f, a[,f) <<. 2t,2 J J  + Ixyl)sinh(2axy)dxdy (4.6) 

The new kernel is positive definite by construction and we take it as our L, .  
To check that L is trace class we write sinh(2axy) as a sum of exponentials 
and apply the reasoning of the proof of Ref. 1, Theorem 1 to each of the 
kernels resulting from that. Now we get a finite limit when letting )t 0--) 1 in 
the trace formula, we have 

sinh(2ax 2) 
n~,o(1) < 41i2a (~176 -2~x2 X 2 

2ax 2 Z(x) -  1 dx (4.7) 
.dO 
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In the other two cases our trouble stems from the zero-order term which 
needs special treatment. It represents a self-adjoint, degenerate operator of 
rank 2. We subtract it to get the truncated kernel G); this kernel can be 
handled exactly as above, so for Z - G2IL~o ~ we get a bound for its number 
of discrete eigenvalues rn~(l) in ( -  m, 1]. We then have nu(1) ~< ms(1 ) + 2 
because of the following simple lemma: 

I.emma 4.2. Let the (bounded or unbounded) self-adjoint operator 
A have n discrete eigenvectors {Xi}~ in ( - r e , a ] ,  its continuous spectrum 
being contained in [a, ~e). Let T be self-adjoint, degenerate of rank m. 
Then A + T has at most n + m discrete eigenvectors in ( -  oo, a]. 

This lemma is a special case of a much more general fact; the proof of 
this simple version is easy and can safely be omitted. 

To get quick results for the even subspaces we forget about G~ in the 
case /z > 1 and let it stand as it is in the case /~ < 1. We then have the 
following theorem: 

Theorem 4.3. With the previous method of handling G~ the BS 
principle yields the bounds 

dx for > 1 n.,o(1 ) ~< 2/~ 2 ~e 2~x2(1 + xZ)s inh(2ax  2) Z ( x )  - 1 (4.8) 

n.e(1)  -< 2 2(%-2 x2(1 + x2)Icosh(2 x2) - 1] + 2, for > 1 
, d O  

(4.9) 

nu,e(1 ) < 2/~2s -2~x2(1 + x2)I cosh(2]a]x 2) - 1] / x  1 

+ 2 t t 2 ( ~ e - 2 " X ~ 2 x s i n h ( 2 l a l x 2 ) ~  d ~ x  , + 2, for/* < 1 (4.10) 
- -  " L - - I  J0 

In particular we get an explicit proof that on all three subspaces the total 
number of discrete eigenvalues is finite. 

In order to find the degree of divergence as a function o f / ,  of these 
expressions we state without proof [its methods are similar to those used in 
the proof of Lemma 1 in Ref. 1 or in the bounds of L ( x )  in Section 1] the 
following lemma: 

Lemma 4.4. For all x E ~ we have the double inequality 

1 ( 2 + x )  < x 2 [ Z ( x )  - 1]-'-<< 1 +  x (4.11) 
(# 

From this it follows immediately that by computing an upper bound on the 
integrals in Theorem 4.3 by means of the second inequality of the lemma 
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we will get the correct degree of divergence. We carry out this procedure 
now for the first case, the other ones are treated similarly. After a change of 
variables we have to compute (t := e~/v) 

1 me -x2 inh(tx 2) 1 + (2~rv),/2 (2v) 1/2 

[ ~rv) ] sinh(tx2) } t x  2 x dx +2c~ 1 + (2- -1 /2  (4.12) 

Putting in the power series of sinh(tx 2) and integrating termwise (this is 
allowed here) we get 

(2v) 1/2 v -  a 2(2~rv) I/2 n=O 

[~0 I'(2n + 1/2) 
+ a  t2" ( 2 n +  1)! o[ t2n l 

+ ( 2 ~ , / 2  ko ( 2 n +  1) 
(4.13) 

The first and third sum in (4.13) make no trouble and sum to [t ~ (0, 1)] 
t(1 - t2) -1 and (1/2t)ln[(1 + t)/(1 - t)], respectively. For the coeffi- 
cients in the second sum we use Stirling's formula to estimate F(2n + 1/2) 
[(2n + 1)!] i <~ - (2n  + 1) -3/2 so that the contribution of this sum does 
not diverge when/~ -~ m (i.e., t -~ 1). In all we get 

{#(1 n~"~ < 2/*2 -4- 1 ) +  1 a 1 ln (2 / , - l )  
2 -1 4r + 1/4 + 

+ (4 ,4 ,  
(2v) t/2 

This bound, therefore, diverges as/,3, worse than the Schr6dinger bound. 
On the other hand, it converges to zero for I*--> 1, which the Schr6dinger 
bound--even restricted to Lo2dd--does not. So this method has some merits. 
The result for (4.9) is the same: divergence like/,3. The mode of divergence 
of (4.10) for s--> 0 is different, the methods above work nevertheless to give 
a divergence like s -  2. 

It now turns out that we can do somewhat better with this method by 
handling the terms in the expansion of G, in powers of a in a more 
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sophisticated manner. Let us therefore go back to the case/,  > 1, 2 Lod d and 
introduce for each/~ the functions 

x 2he- v9 d : = x r~;(x) := f y f(y) ~y, GT.(x) f~ (4.15) 

2 for some fixed f ~ Lod d. Then clearly both functions F~  and GJ*, are in 
2 s Leven for all n ~ N. Again we expand G~ in powers of a and consider the 

term of order 2k + 1 of the matrix element (f, G2f): 

f f j(x)r(y)tx- yt(xy)  + 
O9 

= ffFrk(x)(O~O, xylx-y[)Fr~(y)dxdy 
--00 

0O 

= 16s162163 --8(F~k, G~'k)  (4.16) 

On the other hand, we have for the term of order 2k, k > 1, the two 
expressions 

- 21lF#klI22 = ?ff(x)f(y)lx- y[(xy)2ke -~(xz+y2) dxdy 

oO 

= 

- - 0 0  

121! ~ 2 = - G2k-2112 (4.17) 

Therefore we can balance the terms of order 2k and 2 k +  1 in the 
expansion of G~ itself; we have, using (4.16) and (4.17), 

(2~)2k (2")-'~+~ (c#~ F#k) 
- 2  ~ tIF2~r? - 8 (2k~1)!  ' 

(2002k+2 
~ [ ( 2 a )  2k + 4a [2 4 ][F2k+2t122 

- z  (2k)' [F2k 2 k + l G 2 k [ 2  +3"  ( 2 k +  1 ) ' ( 2 k + l )  

(4.18) 

Retaining only the second summand in (4.18) we get another--and we 
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hope--subtler bound for G~lg2d d 
(50 

4 ;; (f ,G~f) < - 5 1,2 f ( x ) f ( y ) l x_  yle-,,(x~+y 2) 
- -  0 0  

1 • I (2n - ~)v.~-~_ 1) dxdy (4.19) 

If we gather the neglected terms we get, incidentally, another decomposi- 
tion of G, as a difference of two positive operators. 

On Le2ven for > > 1 we first have to handle the zero-order term as in the 
previous bound; for the truncated operator G2 iCe, yon we get with the same 
reasoning as above: 

(f, G. f )  < - -5 _ 

•  (2axy)Zn+']dxdy (4.20) 
.=~ (2n)! (2n) 

In the Lorentz regime there is, of course, no balancing of terms in G~ and 
G~, instead we write for k > 1 

8 (2et) 2k f~k_l) (2002k-1 ( 4a 2) 
- ~ .  (G~k_ ,, < 2(~-~=]-)~ ]lr~k_,][2+ ~ G2~k_, 

and add the resulting contributions to G~ using (4.17) again. This gives 

OG 

4 ;; (f, G.f) <. 2(f, G~f)+ -5 ~2 f(x)f(y)[x- yle -"(~+9) 

 421) .=~ (2~)! (2~) 

This is a little more complicated but for estimating the degree of divergence 
of n,,e(1) from the bound (4.21) (/~ < 1) it is readily seen that we loose 
nothing by estimating the second summand on the right of (4.21) by 
2(f, G~f)~i t  makes no difference. 

If we use the bounds (4.19), (4.20), and (4.21) to apply the BS principle 
we find that they give the same answer as the Schrfdinger bound for n,(Xo), 
Xo E (0.1). However, for n~#(1), respectively, n,.0(1), the new method gives 
considerably better results; for the Rayleigh regime we find that n, .(1)  and 
n~.o(1 ) both diverge as/,2 ln(2~ - I)---better than before but still worse that 
the Schr6dinger bound. This seems surprising if we recall how drastically 
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we cut down Z(x) in that case. In the Lorentz regime, however, we find 

n~,e(1) <<, 2 + 81z2t fo~ + x ] sinh( tx2) dx (4.22) 
(2~ru)l/2 tx 2 

with t := Ic~l/u. One contribution to the integral gives a logarithmic diver- 
gence; the other one sums to ~n~ + 3/2)(2n + 1)!) -1. This ex- 
pression also occurs in the previous bounds but now it is the leading term 
and thus needs more careful handling. Stirling's formula again shows that 
apart from lower order terms it goes like Y~n~=l t2~(2n) -~/2. This can be 
converted with the usual trick into an integral over [1, oo); integrating that 
by parts we find that it diverges as (ln t)-1, i.e., it goes like s-~. So at least 
for the Lorentz regime the extra trouble has paid off and the conjecture 
mentioned above has been confirmed. We summarize the results obtained 
with the Birman-Schwinger method in 

Theorem 4.3. For n~(;~), )~ E (0.1] we have 

(a) n,(X) < c,/,, respectively, n,(Jk) < c2 s-l  for )~ E (0.1) 

(b) n,(1) < c3/,21n(2/,- 1) for /, > 1 

(c) nu.e(1 ) ~< c4 s-l  for /* < 1 

As yet we cannot prove that the degree of divergence of n~(1) in the two 
regimes actually is different though there are indication that this is the case. 
So far we do not even know that n~,e(1 ) actually diverges as/,--> 1/2. Why 
is that so difficult? 

In Ref. 1 we showed that the symmetric operator Z-G1/2  with 
domain D(Z) is essentially self-adjoint; Z -  G, converges to it strongly in 
the generalized sense. From Theorem VIII-I.14 in Ref. 5 we conclude that 
we must show that the essential spectrum of Z -  G1/2 is the whole of 
[0, oo). Viewing it as an operator on L2(~{+ ) and applying Weyl's criterion 
on invariance of the essential spectrum with respect to compact perturba- 
tions to its square we wind up with a perturbed Sturm-Liouville operator to 
whose perturbation none of the current theorems can be applied; so this 
question is a highly nontrivial one. 

Before closing let us mention one point which the reader may already 
have wondered about. We could have estimated closer, in the bound (4.1), 
say, by not throwing away H~- as we did; that would have yielded 

n~(~) < Tr( (Z + H~- - ~)- 'H~+ ), h e  (0.1) (4.23) 

Similar possibilities exist in all the cases where G, has been decomposed as 
difference of two positive operators. The reason why we did not do this is 
that the inverse of Z + H S - ~  cannot be computed except as a series 
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expansion with respect to the perturbation H~-. The first order of this 
perturbation expansion gives a contribution (the ad hoe introduction of 
functions F and 0 should be self-explanatory) 

- ff [ Z(x) - ~] -'~,7 i x, y)[ Z(y) - ~] -'n + (x, y) d~ dy 

cO 

_ e - x 2 g  - 9  

_ d. ffF(x)F(y)O[ (x-y)]d dy 
(4.24) 

and this diverges far slower with/~---> oo than the leading term. The same 
holds true for the higher-order terms, i.e., the asymptotic behavior does not 
change if the more complicated bound is used. Only for small/x is there a 
sizable improvement on the bound (4.1) but there the original bound is 
extremely weak, so that does not seem worth the trouble. Though one could 
possibly improve the bounds we gave along the same lines of reasoning we 
feel that radically different methods will have to be used if a substantial 
improvement is to be gotten, supposing, of course, that our bounds do not 
yet give the correct asymptotic behavior. 
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